Advanced Clean Transit in California

Los Angeles Area Chamber of Commerce

March 18, 2016

Tony Brasil, Chief
Heavy Duty Diesel Implementation Branch
Mobile Source Control Division
California Air Resources Board

California Environmental Protection Agency

Air Resources Board
Driving Change

- Significant reductions needed to meet air quality and climate goals
 - Meet federal health-based ambient air quality standards
 - 40% reduction in GHGs by 2030
 - 80% reduction in GHGs by 2050
 - Up to 50% petroleum use reduction by 2030
- Achieving goals will require a transformational change in all sectors
 - Stationary, industrial, mobile, other
All Possible Methods Needed to Meet Goals

- Increased efficiencies
- Cleaner combustion
- Cleaner fuels
- Zero emission vehicles
- In-use controls
- Other
Long-term Transformation for Mobile Sources

“Zero emission equipment everywhere feasible, and near-zero emission equipment powered by clean low-carbon renewable fuels everywhere else.”

--Sustainable Freight: Pathways to Zero and Near-Zero Emissions (Discussion Draft, April 2015)
Coordination Efforts

- Collaborating with transit and regional agencies
- Working closely with funding programs and partners
- Developing standards
- Engagement with technology and bus manufacturers
- Coordination with utilities
- Coordination with other programs
 - Sustainable Communities Strategies (SB 375)
 - Sustainable Freight Strategies
Transit Agency Mission

- Provide safe, reliable and affordable public transit service, including in disadvantaged communities
- Help meet future population growth needs
- Reduce traffic congestion, urban parking, and local air quality issues
- Help achieve climate goals
- Promote better land use
- Provide emergency transportation
Existing Transit Fleet Rule

- Initially adopted in 2000; transit fleets first to transition to alternative fuels or diesel particulate filters
- Significant reductions in diesel PM and NOx emissions from transit fleets
- Two fuel paths: diesel path or alternative-fuel path
- Includes long-term zero emission bus purchase requirement
 - Purchase requirement on hold pending bus technology assessment (Resolution 09-49)
Technology Assessment

- Update in November 2015
- Both battery and fuel cell electric buses are commercially available for transit applications
- Significant technology advancements since 2009
 - Increased reliability & availability
 - Declining costs
 - Improved performance
 - Extended mileage range
Vision for Future Transit

- Use most efficient transportation technologies
- Enhance service for disadvantaged communities
- Seamless integration between modes and transit systems
- Enhanced mobility with innovation
- Continue to provide efficient, safe, and affordable transit services across California
Advanced Clean Transit Concept

- Mix of cleaner combustion & zero-emission buses
 - Low NOx engines and renewable fuels
 - Transition to zero-emission buses by 2040
- Natural fleet replacement rate (not accelerated)
- Flexibility for regional collaboration and opportunity for greater efficiencies in transporting passengers
Established Workgroups and Enhanced Outreach

- Advanced Clean Transit Workgroup
 - Transit Agency Subcommittee
- Technology Symposium
- Board members and staff visiting transit agencies to better understand experiences and concerns
Near-Zero Emissions

- **Low NOx engines**
 - First CNG engine 90% lower NOx commercial in spring 2016
 - Diesel engines not yet available

- **Renewable Fuels**
 - Greenhouse gas benefit (LCFS)
 - Long-term supply issue
Zero-Emission Fuel Cell Electric Bus

- AC Transit, Sunline Transit
- Excellent range, improved durability
- Fueling time comparable to diesel fueling
- Hydrogen price is comparable to diesel with large throughput
- Bus still costly at low volumes
Zero-Emission Battery Electric Bus
(Slow Charge)

- Antelope Valley Transit, LA Metro, Long Beach Transit, and Santa Barbara MTD
- About 160 miles per charge (3-4 hours)
- Charging infrastructure is inexpensive
- Potential fuel and maintenance cost savings
- Range constraint
Zero-Emission Battery Electric Bus (Fast Charge)

- San Joaquin RTD, Foothill Transit
- On-route fast charging (3-10 min) = unlimited range
- Charging infrastructure is more expensive
- Potential fuel and maintenance cost savings
- Fixed routes
Zero Emission Bus Market Ready to Expand

- Ten California fleets operating zero emission buses
 - Several fleets adding zero emission buses this year
- Number of zero emission buses to more than double in California this year
- Ten bus manufacturers offering dozens of models in various bus categories and sizes
- Five zero emission bus manufacturing facilities in California
- United States and world market expanding
Most Manufacturers Offer Zero Emission Buses

- **Nova Bus**
 - 15%
 - Battery electric bus option in existing platform

- **Gillig**
 - 33%
 - Currently demonstrating battery electric bus in existing hybrid electric platform

- **Others (BYD, Proterra, El Dorado, GreenPower, etc.)**
 - 5%

- **New Flyer**
 - 45%
 - Battery and fuel cell electric bus options in existing platforms

Source: New Flyer, 2014
Multiple Fleets Operating Zero Emission Buses in California

<table>
<thead>
<tr>
<th>Bus Fleet Operator</th>
<th>Technology Type</th>
<th>Zero Emission Buses</th>
<th>Existing Fleet Size</th>
<th>ZBus Percent of Fleet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In Service</td>
<td>Ordered</td>
<td>Total</td>
</tr>
<tr>
<td>Antelope Valley Transit</td>
<td>Battery</td>
<td>2</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>Stanford University</td>
<td>Battery</td>
<td>13</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Anaheim Resort Transit</td>
<td>Fuel Cell</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>SunLine Transit</td>
<td>Fuel Cell</td>
<td>5</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Battery</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>Battery</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Porterville Transit</td>
<td>Battery</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Foothill Transit</td>
<td>Battery</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>San Joaquin RTD</td>
<td>Battery</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Long Beach Transit</td>
<td>Battery</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>UC Irvine</td>
<td>Fuel Cell</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ZEBA (AC Transit lead)</td>
<td>Fuel Cell</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Monterey-Salinas</td>
<td>Battery</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Los Angeles MTA</td>
<td>Battery</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>77</td>
<td>96</td>
<td>173</td>
</tr>
</tbody>
</table>

1 Source: 2014 ARB Reporting Database
How Do Costs Compare?

- Zero emission bus prices coming down
- Potential battery electric bus cost savings
 - Maintenance cost saving
 - Fuel cost saving with LCFS credits
- Fuel cell electric bus costs are declining but are still high in low volumes
- Low Carbon Fuel Standard lowers alternative fuel costs
- Other start-up costs with transition to new technology
- Continuing to refine cost details and collect data
Low Carbon Fuel Standard Program

- Fuel producers and importers must reduce carbon intensity of transportation fuels or must buy credits
 - Reduces GHG emissions
 - Reduces dependence on petroleum
- Transit fleets can generate credits
 - Dispense CNG, electricity, hydrogen into buses
 - Fixed guideway systems (rail, trolley bus, street car)
- Credits generated by alternative fuel producers
 - Reflected in renewable fuel price
 - Can share credits through contracts
Total Cost of Ownership in the Same Ballpark

<table>
<thead>
<tr>
<th>Total Cost of Ownership (2016 Dollars, Thousands)</th>
<th>CNG Bus</th>
<th>Battery Electric Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel (net cost after LCFS credit)</td>
<td>$134</td>
<td>$36</td>
</tr>
<tr>
<td>Maintenance</td>
<td>$418</td>
<td>$298</td>
</tr>
<tr>
<td>Bus & Installed Charger</td>
<td>$555</td>
<td>$790</td>
</tr>
</tbody>
</table>

CNG Bus
- 3.6 miles/gal on at $1.07/diesel gallon equivalent
- Maintenance is $0.85/mile + $35,000 mid life rebuild
- LCFS credit is typically received by fuel provider and already reflected in price when renewable diesel is used

Battery Electric Bus
- 2 kWh/mile at $0.15/kWh
- Maintenance is $0.66/mile reflects savings from manufacturer
- LCFS credit value of $100 (claimed by transit agency)
- 12 year battery warranty

Note: Analysis period is 14 years at 40,000 miles/year for both buses and future costs adjusted to 2016 dollars.
California Supporting Transition to Advanced Technologies

- Zero Emission Bus Pilot Commercial Deployment Projects
 - Up to $65 million available (FY14/15) and (FY 15/16)*

- Hybrid and Zero Emission Voucher Incentive Project (HVIP)
 - $110,000 per vehicle

- Low Carbon Transit Operations Program
 - 5% continuous appropriation of annual Greenhouse Gas Reduction Fund (GGRF) proceeds

- Transit and Intercity Rail Capitol Program
 - 10% continuous appropriation of annual GGRF proceeds

* Portion of funds are pending authorization by the Legislature
Meeting Service Needs

- No reduced transit service as a result of the regulation
- Learning from transit fleets operating battery electric and fuel cell electric buses in revenue service
- Phased-in schedule to reduce operational risk and maximize the useful life of existing infrastructure
- Large deployments possible
 - Antelope Valley Transit already committed to 100% battery electric bus fleet by end of 2018
- Technology off-ramps to address operational concerns
Considerations for a Performance-Based Approach

- NOx/PM emissions in non-attainment areas
- Life cycle GHG emissions
- Surplus emission benefits outside of other regulatory programs
- Availability and best use of renewable fuels
- Impact of deterioration and high-emitters
Next Steps

- Continued engagement with stakeholders
 - Advanced Clean Transit Workgroup
 - Transit Agency Subcommittee
 - Electric Utility Workgroup
- Refine cost numbers and operational needs
- Additional outreach and education
 - How to generate and sell credits from LCFS program
- Workshops in spring and summer 2016
 - Technology and regulatory proposals
 - Economics and business case, funding and incentives
- Board consideration late 2016
Advanced Clean Transit Information

Tony Brasil, Chief
Heavy Duty Diesel Implementation Branch
tony.brasil@arb.ca.gov (916) 323-2927

Shirin Barfjani, Lead staff
shirin.barfjani@arb.ca.gov, (916) 445-6017

Web page http://www.arb.ca.gov/msprog/bus/bus.htm